叶绿素荧光成像预处理:程序软件可自动识别多个植物样品或多个区域,也可手动选择区域(Region of interest,ROI)。手动选区的形状可以是方形、圆形、任意多边形或扇形。软件可自动测量分析每个样品和选定区域的荧光动力学曲线及相应参数,样品或区域数量不受限制(>1000)
氧气检测技术:光纤氧传感器技术。
测量呼吸室:透明聚苯乙烯材质,支持预消毒处理,可重复使用。
氧气测量主机:单个重670 g,162 x 102 x 32 mm
氧气主机内置温度传感器:0-50°C,分辨率012°C,精度±0.5°C
氧气主机内置压强传感器:300-1100mbar,分辨率11mbar,精度±6mbar
氧气最大采样频率:单通道激活时可达10-20次每秒
氧气测量精度:±0.1% O2@1% O2或±0.05 mg/L@0.44 mg/L
氧气测量分辨率:01% O2@1% O2或0.005 mg/L@0.44 mg/L
测量通道数:96
应用案例
Perin等人采用藻类高通量光合作用测量系统初步筛选微拟球藻(Nannochloropsis gaditana)的高光效突变体。研究小组使用化学引变剂乙基甲烷磺酸盐(EMS)诱导突变和插入突变两种方式生成突变体库,使用叶绿素荧光成像技术检测其光合活性的可能变化,使用的叶绿素荧光参数包括最小荧光F0、最大光化学效率Fv/Fm、有效光化学效率ΦPSII、光系统调节能力NPQ(Perin et al., 2015)。
微拟球藻荧光强度筛选
左-F0(红圈为野生型,白圈为筛选出的、荧光过低或过高的突变体);右:叶绿素荧光的定量(红点代表野生型,篮圈代表筛选出的突变体,绿色三角表示平均值±标准差)(Perin et al., 2015)
不列颠哥伦比亚大学生物多样性研究中心使用了藻类高通量光合作用测量系统评估了全球变暖对斜生栅藻(Scenedesmus obliquus)光合速率和呼吸速率的影响,发现两者均对测试温度表现出一定的可塑性。不同选择温度(12℃、18℃)的栅藻光合速率无差异;而高温选择(18℃)的栅藻相对低温选择(12℃)的栅藻,具有更高的呼吸速率(Tseng et al., 2019)。
不同温度选择(12℃、18℃)的斜生栅藻光合速率(左)和呼吸速率(右)随测试温度的变化(Tseng et al., 2019)
参考文献
Claudi, R., Alei, E., Battistuzzi, M., Cocola, L., Erculiani, M.S., Pozzer, A.C., Salasnich, B., Simionato, D., Squicciarini, V., Poletto, L., La Rocca, N., 2021. Super-Earths, M Dwarfs, and Photosynthetic Organisms: Habitability in the Lab. Life 11(1): 10
Dann, M., Ortiz, E.M., Thomas, M., Guljamow, A., Lehmann, M., Schaefer, H., Leister, D., 2021. Enhancing photosynthesis at high light levels by adaptive laboratory evolution. Nat. Plants 7, 681–695.
Gavel, A., Mar?álek, B., 2004. A novel approach for phytotoxicity assessment by CCD fluorescence imaging. Environmental Toxicology 19, 429–432.
Herdean, A., Hall, C., Hughes, D.J., Kuzhiumparambil, U., Diocaretz, B.C., Ralph, P.J., 2023. Temperature mapping of non-photochemical quenching in Chlorella vulgaris. Photosynth Res 155, 191–202.
Macário, I.P.E., Veloso, T., Frankenbach, S., Ser?dio, J., Passos, H., Sousa, C., Gon?alves, F.J.M., Ventura, S.P.M., Pereira, J.L., 2022. Cyanobacteria as Candidates to Support Mars Colonization: Growth and Biofertilization Potential Using Mars Regolith as a Resource. Front Microbiol 13, 840098.
Nowicka, B., 2020. Practical aspects of the measurements of non‐photochemical chlorophyll fluorescence quenching in green microalgae Chlamydomonas reinhardtii using Open FluorCam. Physiologia Plantarum 168, 617–629.
Perozeni, F., Stella, G., Ballottari, M., 2018. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae. IJMS 19, 155.
Tseng, M., Bernhardt, J.R., Chila, A.E., 2019. Species interactions mediate thermal evolution. Evolutionary Applications 12, 1463–1474.
Bernhardt, J.R., Sunday, J.M., O’Connor, M.I., 2017. An empirical test of the temperature dependence of carrying capacity. bioRxiv, 210690.