ʱ¼ä£º2019-02-27
×÷Õߣº¿·¢Æì½¢Ìü(Öйú)
µã»÷Á¿£º
¼ò½é£º
MC1000 8ͨµÀÔåÀàÅàÑøÓëÔÚÏß¼à²âϵͳÓÉ8¸ö100mlÔåÀàÅàÑøÊԹܡ¢Ë®Ô¡¿ØÎÂϵͳ¡¢LEDs¹âÔ´¿ØÖÆϵͳ¼°¹âÃܶȺÍÈܽâÑõ£¨Ñ¡Å䣩ÔÚÏß¼à²âϵͳµÈ×é³É£¬¿ÉÓÃÓÚÔåÀàÅàÑøÓë¿ØÖÆʵÑé¡¢ÌݶȶԱÈʵÑéµÈ£¬ÊÊÓÚË®ÌåÉú̬¶¾ÀíѧÑо¿¼ì²â¡¢ÔåÀàÉúÀíÉú̬Ñо¿¡¢Ë®Éú̬Ñо¿µÈ£¬ÆäÖ÷Òª¹¦ÄÜÌصãÈçÏ£º
1. 8ͨµÀÔåÀàÅàÑø£¬Ã¿¸öÔåÀàÅàÑøÊԹܿÉÅàÑø85mlÔåÒº
2. LEDs¹âÔ´£¬¿É¶Ôÿ¸öÅàÑøÊԹܶÀÁ¢µ÷½Ú¿ØÖƺÍÉèÖùâÇ¿¶ÈºÍʱ¼ä£¬ÈçÖçÒ¹±ä»¯µÈ
3. ¹âÃܶÈÔÚÏß¼à²â£¬°üÀ¨OD680¡¢OD720£¬¼à²âÊý¾Ý×Ô¶¯´æ´¢
4. ÈܽâÑõÔÚÏß¼à²â£¨±¸Ñ¡£©ÒÔ²âÁ¿·ÖÎöÔåÀà¹âºÏ×÷ÓõÈ
5. ζȡ¢¹âÕÕ¿ØÖÆ¿ÉÓû§ÉèÖò»Í¬µÄ³ÌÐòģʽ
6. ÆøÅÝ»ìÔÈ£º¿Éͨ¹ýµ÷½Ú·§ÊÖ¶¯µ÷½ÚÆøÁ÷Á¿ÒÔ¶ÔÅàÑøÊÔ¹ÜÄÚµÄÔåÀà½øÐлìÔÈ
7. ¿ÉÑ¡ÅäO2/CO2¼à²âϵͳ£¬ÔÚÏß¼à²âÔåÀà¹âºÏ·ÅÑõºÍCO2ÎüÊÕ
8. ¿ÉÑ¡ÅäÔåÀàÓ«¹â²âÁ¿Ä£¿é
Ó¦ÓÃÁìÓò£º
¡ñ¶àͨµÀͬ²½ÔåÀàÅàÑø
¡ñͬ²½ÌݶÈвÆÈʵÑé
¡ñÅàÑøÌõ¼þÓÅ»¯
¡ñ¿ØÖÆÅàÑøÌõ¼þÓëÔåÀàÉú³¤¶¯Á¦Ñ§¼à²â
ÒÇÆ÷Ðͺţº
? MC 1000-OD£º 8¸öͨµÀ¹âÔ´ÑÕÉ«Ïàͬ£¬±êÅäÀä°×¹âLED
? MC 1000-OD-WW£º8¸öͨµÀ¹âÔ´ÑÕÉ«Ïàͬ£¬±êÅäů°×¹âLED
? MC 1000-OD-MULTI£º 8¸öͨµÀ¹âÔ´ÑÕÉ«²»Í¬£¬·Ö±ðΪ1£©×Ϲâ405nm£¬2£©Æ·À¶¹â450nm£¬3£©À¶¹â470nm»òÀä°×¹â£¬4£©Å¯°×¹â£¬5£©Â̹â540nm£¬6£©»Æ³È¹â590nm£¬7£©ºì¹â640nm£¬8£©Ô¶ºì¹â730nm¡£
? MC 1000-OD-MIX£ºÃ¿¸öͨµÀ¿ÉÅ䱸×î¶à8ÖÖ²»Í¬ÑÕÉ«µÄLED¹âÔ´£¬¹âÔ´ÑÕÉ«¿ÉÓÉÓû§¶¨ÖÆ£¬¿ÉÑ¡ÑÕɫΪ1£©×Ϲâ405nm£¬2£©Æ·À¶¹â450nm£¬3£©À¶¹â470nm£¬4£©Å¯°×¹â£¬5£©Â̹â530nm£¬6£©³Èºì¹â615nm£¬7£©Éîºì¹â660nm£¬8£©Ô¶ºì¹â730nm¡£
¼¼ÊõÖ¸±ê£º
1. ÔåÀàͬ²½ÅàÑøͨµÀ£º8¸ö
2. ÅàÑø¹ÜÈÝÁ¿£º100ml£¬½¨Òé×î´óÅàÑøÈÝÁ¿85ml
3. ÔÚÏß¼´Ê±¼à²â²ÎÊý£º·Ö±ð¼à²âÿ¸öÅàÑø¹ÜµÄOD680ºÍOD720£¬Êý¾Ý×Ô¶¯±£´æµ½Ö÷»úÄÚ´æÖУ¬PIN¹âµç¶þ¼«¹Ü¼ì²âÆ÷£¬665£750nm´øͨÂ˲¨Æ÷
4. ¾«È·¿Øη¶Î§£º±ê×¼ÅäÖøßÓÚ»·¾³Î¶È5-10¡æ£¨Óë¹âÇ¿Óйأ©~60¡æ£¬¿ÉÑ¡Åä15¡æ-60¡æ£¨»·¾³Î¶È20¡æ£¬Ðè¼ÓÅäÖÆÀäµ¥Ôª£©
5. ¼ÓÈÈϵͳ£º150WͲÐμÓÈÈÆ÷
6. ˮԡÌå»ý£º5L
7. ˮԡ×Ô¶¯²¹Ë®Ä£¿é£¨Ñ¡Å䣩£ºË®Ô¡Ë®Î»ÒòÕô·¢½µµÍºó¿É×Ô¶¯²¹Ë®
8. ¹âԴϵͳ£ºÈ«LED¹âÔ´£¬¿ÉÔÚ0-100%·¶Î§ÄÚµ÷¿Ø£¬Ã¿¸öͨµÀµÄ¹âÇ¿¿É·Ö±ð¶ÀÁ¢µ÷¿Ø
1£© MC 1000-OD£º±êÅäÀä°×¹âLED£¬¿ÉÑ¡Åäů°×¹â¡¢ºì¹â£¨635nm£©»òÀ¶¹â£¨470nm£©LED£»¹âÇ¿0-1000¦Ìmol/m2/s¿Éµ÷£¬ ¿ÉÉý¼¶ÖÁ0-2500¦Ìmol/m2/s
2£© MC 1000-OD-WW£º±êÅäů°×¹âLED£¬¹âÇ¿0-1000¦Ìmol/m2/s¿Éµ÷£¬¸ü¸ß¹âÇ¿¿É¶¨ÖÆ
3£© MC 1000-OD-MULTI£º8¸öͨµÀ¹âÔ´ÑÕÉ«²»Í¬£¬·Ö±ðΪ×Ϲâ405nm£¬À¶×Ϲâ450nm£¬À¶¹â470nm»òÀä°×¹â£¬Å¯°×¹â£¬Â̹â540nm£¬»Æ³È¹â590nm£¬ºì¹â640nm£¬Ô¶ºì¹â730nm£»¹âÇ¿0-1000¦Ìmol/m2/s¿Éµ÷
4£© MC 1000-OD-MIX£ºÃ¿¸öͨµÀ¿ÉÅ䱸×î¶à8ÖÖ²»Í¬ÑÕÉ«µÄLED¹âÔ´£¬¹âÔ´ÑÕÉ«¿ÉÓÉÓû§¶¨ÖÆ£¬×î´ó¹âÇ¿¿É´ï2500¦Ìmol/m2/s
9. ¿Ø¹âģʽ£º¿É¾²Ì¬»ò¶¯Ì¬ÉèÖùâÕÕ³ÌÐò£¬ÈçÕýÏÒ¡¢ÖçÒ¹½ÚÂÉ¡¢Âö³åµÈ
10. ¿ØÖƵ¥ÔªÏÔʾÆÁ£º¿Éµ÷¿ØÅàÑø³ÌÐòºÍÏÔʾÊý¾Ý
11. ÆøÁ÷µ÷¿Ø£ºÍ¨¹ý¶à¹Üµ÷½Ú·§¶Ô8¸öÅàÑø¹ÜÊÖ¶¯¶ÀÁ¢µ÷¿ØÆøÌåÁ÷Á¿
12. OD²âÁ¿³ÌÐò£º½«Ö÷»úÄÚ´æÖеÄODÊý¾ÝÏÂÔص½µçÄÔÖв¢ÒÔͼ±íÐÎʽÏÔʾ£¬Êý¾Ý¿Éµ¼³öΪTXT»òExcelÎļþ
13. MCʵʱÔÚÏß¼à²â·ÖÎöÄ£¿é£¨º¬×¨Óù¤×÷Õ¾ºÍÈí¼þ»ù´¡°æ»ò¸ß¼¶°æ£¬Ñ¡Å䣩
1£© ͬʱ¿ØÖÆ2̨MC1000£¨»ù´¡°æ£©»òÎÞÏÞ̨MC1000£¨¸ß¼¶°æ£©
2£© ͨ¹ýPBRÈí¼þ¶¯Ì¬µ÷¿Ø¹âÕÕºÍζÈģʽ
3£© ͨ¹ý¹âÃܶȣ¨OD680¡¢OD720£©±ä»¯ÊµÊ±¼à²âÔåÀàÉúÎïÁ¿
4£© ¶ÔÉú³¤ËÙÂʽøÐÐʵʱ»Ø¹é·ÖÎö
5£© ¶àÊý¾Ý¹ÜÀí¹¦ÄÜ£¨¹ýÂË¡¢²éÕÒ¡¢¶àÖص¼³ö£©
6£© ¿É½«²âÁ¿Êý¾Ý¡¢ÅàÑø³ÌÐòºÍÆäËûÐÅÏ¢±£´æµ½Êý¾Ý¿âÖÐ
7£© ͨ¹ýGUIͼÐÎÓû§½çÃæÉèÖÃÅàÑø³ÌÐò²¢ÔÚÏßÏÔʾ²âÁ¿Êý¾Ýͼ
8£© Êý¾Ý¿Éµ¼³öΪCSV¡¢Excel»òXMLÎļþ
9£© Ö§³ÖGMS¸ß¾«¶ÈÆøÌå»ìºÏϵͳ£¨½öÏ޸߼¶°æ£©
10£© Óû§×Ô±à³ÌÅàÑø³ÌÐò£¨½öÏ޸߼¶°æ£©
11£© É趨ʵÑéÆðʼʱ¼ä£¨½öÏ޸߼¶°æ£©
12£© µç×ÓÓʼþ֪ͨ£¨½öÏ޸߼¶°æ£©
14. GMS150¸ß¾«¶ÈÆøÌå»ìºÏϵͳ£¨Ñ¡Å䣩£º¿É¿ØÖÆÆøÌåÁ÷Ëٺͳɷ֣¬±êÅäΪ¿ØÖƵªÆø/¿ÕÆøºÍ¶þÑõ»¯Ì¼£¬ÆøÔ´ÐèÓû§×Ô±¸
15. ºã×Ç¿ØÖÆÄ£¿é£¨Ñ¡Å䣩£º´øÓÐ8¸ö¿ØÖÆ·§£¬¿É¶ÀÁ¢¿ØÖÆ8¸öÅàÑø¹ÜµÄ×Ƕȣ¬ÓÉÈí¼þ×Ô¶¯¿ØÖÆ
16. O2/CO2¼à²âϵͳ£¨Ñ¡Å䣩£º8ͨµÀÐøÅúʽ¼à²âÔåÀàCO2ÎüÊÕ»ò¹âºÏ·ÅÑõͨÁ¿£º
1£© ÑõÆø·ÖÎö²âÁ¿£ºÑõÆø²âÁ¿·¶Î§0£100£¥£¬·Ö±æÂÊ0.0001%£¬¾«È·¶ÈÓÅÓÚ0.1£¥£¬Î¶ȡ¢Ñ¹Á¦²¹³¥,ÊýÂë¹ýÂË£¨ÔëÒô£©0-50Ãë¿Éµ÷£¬¾ßÁ½ÐÐÎÄ×ÖÊý×ÖLCD±³¹âÏÔʾÆÁ£¬¿ÉͬʱÏÔʾÑõÆøº¬Á¿ºÍÆøѹ
2£© ¶þÑõ»¯Ì¼·ÖÎö²âÁ¿£ºË«²¨³¤·ÇÉ«É¢ºìÍâ¼¼Êõ£¬²âÁ¿·¶Î§0£5£¥»ò0£15£¥Á½¼¶Ñ¡Ôñ£¨Ë«³Ì£©£¬·Ö±æÂÊÓÅÓÚ0.0001%»ò1ppm£¨¿É´ï0.1ppm£©£¬¾«È·¶È1%£¬Í¨¹ýÈí¼þζȲ¹³¥£¬¾ßÁ½ÐÐÎÄ×ÖÊý×ÖLCD±³¹âÏÔʾÆÁ£¬¿ÉͬʱÏÔʾCO2º¬Á¿ºÍÆøѹ£¬¾ßÊýÂë¹ýÂË£¨ÔëÒô£©¹¦ÄÜ
3£© ÆøÌå³éÑùÓëÆø·Çл»£º¾ß±¸¸ôĤ±Ã¡¢ÆøÁ÷¿ØÖÆÕë·§ºÍ¾«ÃÜÁ÷Á¿¼Æ£¬Æø·×Ô¶¯¶¨Ê±Çл»¹¦ÄÜ
17. ÔåÀàÓ«¹â²âÁ¿Ä£¿é£¨Ñ¡Å䣩£ºÓÃÓÚ²âÁ¿ÔåÀàÓ«¹â²ÎÊýÒÔ·´Ó³ÔåÀàÉúÀí״̬¼°Å¨¶È£¬Ó«¹â²âÁ¿³ÌÐò°üÀ¨Ft£¬QY£¬OJIP-test£¬NPQ¡¢¹âÏìÓ¦ÇúÏߵȣ¬¿ÉÑ¡Åä̽ͷʽ²âÁ¿»òÊÔ¹Üʽ²âÁ¿£º
1£© ̽ͷʽ²âÁ¿£º¾ß±¸¹âÏ˲âÁ¿Ì½Í·£¬¿É²åÈëÅàÑøÒºÖÐÔλ²âÁ¿ÔåÀàÓ«¹â²ÎÊý
2£© ÊÔ¹Üʽ²âÁ¿£º¾ß±¸²âÁ¿±£¬¿ÉÈ¡Ñù¾«È·²âÁ¿ÔåÀàÓ«¹â²ÎÊý¼°¹âÃܶÈÖµ
18. ͨѶ·½Ê½£ºUSB
19. ³ß´ç£º71¡Á33¡Á21 cm
20. ÖØÁ¿£º13kg
21. ¹©µç£º110-240V
Ó¦Óð¸Àý£º
²»Í¬¹âÇ¿ÏÂÀ¶ÔåÉú³¤¶¯Ì¬¼à²â£¨Gupta, 2020, Biotechnol Biofuels£©
²»Í¬¹âÇ¿¶ÔÕ¤ÔåÉ«Ëؼ°¹âϵͳӰÏ죨Kona, 2021, Bioresource technology£©
²úµØ£º½Ý¿Ë
²Î¿¼ÎÄÏ×£º
1. Schad A, et al. 2023. Optimising biotechnological glycolate production in Chlamydomonas reinhardtii by improving carbon allocation towards the product. Chemical Engineering Journal 459(1): 141432.
2. Nad M, et al. 2023. Waste-to-energy plants flue gas CO2 mitigation using a novel tubular photobioreactor while producing Chlorella algae. Journal of Cleaner Production 358(20): 135721.
3. Che S, et al. 2023. Quantification of Photosynthetic Pigments in Neopyropia yezoensis Using Hyperspectral Imagery. Plant Phenomics. DOI: 10.34133/plantphenomics.00
4. Le¨®n VA, et al. 2023. Exploring Nordic microalgae as a potential novel source of antioxidant and bioactive compounds. New Biotechnology 73: 1-8.
5. Rani V, et al. 2023. Light-Dependent Nitrate Removal Capacity of Green Microalgae. International Journal of Molecular Sciences 24(1): 77.
6. Cho BA, et al. 2023. Integrated experimental and photo-mechanistic modelling of biomass and optical density production of fast versus slow growing model cyanobacteria. Algal Research, 102997.
7. Minhas AK, et al. 2023. Influence of light intensity and photoperiod on the pigment and, lipid production of Dunaliella tertiolecta and Nannochloropsis oculata under three different culture medium. Heliyon, 9(2): e12801.
8. Vyas S, et al. 2022. Biosynthesis of microalgal lipids, proteins, lutein, and carbohydrates using fish farming wastewater and forest biomass under photoautotrophic and heterotrophic cultivation. Bioresource Technology 359: 127494.
9. Sanjeet M, et al. 2022. Improving the content of high value compounds in Nordic Desmodesmus microalgal strains. Bioresource Technology 359: 127445.
10. Cazzaniga S, et al. 2022. Engineering astaxanthin accumulation reduces photoinhibition and increases biomass productivity under high light in Chlamydomonas reinhardtii. Biotechnology for Biofuels and Bioproducts 15: 77.
11. Meireles AV, et al. 2022. The lifetime of the oxygen-evolving complex subunit PSBO depends on light intensity and carbon availability in Chlamydomonas. Plant, cell & environment . Doi:10.1111/PCE.14481.
12. Jia M, et al. 2022. The bHLH family NITROGEN-REPLETION INSENSITIVE1 represses nitrogen starvation-induced responses in Chlamydomonas reinhardtii. The Plant Journal. doi: 10.1111/tpj.15673.
13. Sz¨¦les E, et al. 2022. Microfluidic Platforms Designed for Morphological and Photosynthetic Investigations of Chlamydomonas reinhardtii on a Single-Cell Level. Cells 11(2):285.
14. Jain P, et al. 2022. Bioprospecting Indigenous Marine Microalgae for Polyunsaturated Fatty Acids Under Different Media Conditions. Frontiers in Bioengineering and Biotechnology 10: 842797.
15. Villanova V, et al. 2022. Mixotrophy in a Local Strain of Nannochloropsis granulata for Renewable High-Value Biomass Production on the West Coast of Sweden. Marine Drugs 20(7): 424.
16. Cecchin M, et al. 2022. Astaxanthin and eicosapentaenoic acid production by S4, a new mutant strain of Nannochloropsis gaditana. Microb Cell Fact 21: 117.
17. Schad A, et al. 2022. Crossing and selection of Chlamydomonas reinhardtii strains for biotechnological glycolate production. Appl Microbiol Biotechnol 106: 3539¨C3554 .
18. Ben-Sheleg A. et al. 2022. Photoacclimation of photosystem II photochemistry induced by rose Bengal and methyl viologen in Nannochloropsis oceanica. Photochem Photobiol Sci 21: 2205¨C2215.
19. Diaz MD, et al. 2022. Influence of Irradiance and Wavelength on the Antioxidant Activity and Carotenoids Accumulation in Muriellopsis sp. Isolated from the Antofagasta Coastal Desert. Molecules 27(8): 2412.
20. Hao R, et al. 2022. Photobiological production of high-value pigments via compartmentalized co-cultures using Ca-alginate hydrogels. Scientific Reports 12: 22163.
Î÷°²Ñз¢ÖÐÐÄ
΢ÐŹ«ÖÚºÅ
ÒµÎñ×Éѯ
΢ÐźÅ
¿·¢Æì½¢Ìü(Öйú)¹«Ë¾
΢ÐŹ«ÖÚºÅ
¿·¢Æì½¢Ìü(Öйú)¹«Ë¾
ÊÓƵºÅ
ÁªÏµÎÒÃÇ£º
µØÖ·: ±±¾©Êк£µíÇø¸ßÀïÕÆ·3ºÅÔº6ºÅÂ¥1µ¥Ôª101B
µç»°: 010-82611269/1572
ÊÖ»ú: 13671083121
´«Õæ: 010-62465844
Email: info@eco-tech.com.cn
ÓÑÇéÁ´½Ó£º